Project systems theory - Solutions

Resit exam 2018-2019, Friday 12 April 2019, 14:00-17:00

Problem 1
$(6+8+4=18$ points $)$
Consider the model of population dynamics given by

$$
\begin{align*}
& \dot{x}_{1}(t)=\left(\beta_{1}-F(x(t))\right) x_{1}(t), \\
& \dot{x}_{2}(t)=\left(\beta_{2}-F(x(t))\right) x_{2}(t), \tag{1}\\
& \dot{x}_{3}(t)=\left(\beta_{3}-F(x(t))\right) x_{3}(t),
\end{align*}
$$

where $x_{i}(t) \in \mathbb{R}, i=1,2,3$ denote the populations of three species and $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{\mathrm{T}}$. Here,

$$
\begin{equation*}
F(x)=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}, \tag{2}
\end{equation*}
$$

for real parameters $\alpha_{i}>0, i=1,2,3$, denotes the total burden on the environment and $\beta_{i}>0$, $i=1,2,3$, denote the natural growth rates for each species. They are assumed to satisfy

$$
\begin{equation*}
\beta_{1}>\beta_{2}>\beta_{3}>0 \tag{3}
\end{equation*}
$$

(a) Equilibrium points $\bar{x}=\left[\begin{array}{lll}\bar{x}_{1} & \bar{x}_{2} & \bar{x}_{3}\end{array}\right]^{\mathrm{T}}$ are defined as solutions of

$$
\begin{align*}
& 0=\left(\beta_{1}-F(\bar{x})\right) \bar{x}_{1}, \\
& 0=\left(\beta_{2}-F(\bar{x})\right) \bar{x}_{2}, \tag{4}\\
& 0=\left(\beta_{3}-F(\bar{x})\right) \bar{x}_{3} .
\end{align*}
$$

Starting with the first equation, we consider the cases $\bar{x}_{1} \neq 0$ and $\bar{x}_{1}=0$.
Assume that $\bar{x}_{1} \neq 0$, then we necessarily have $\beta_{1}=F(\bar{x})$. However, as the values of β_{i} are distinct (see (3)), this means that $\beta_{2}-F(\bar{x}) \neq 0$ and $\beta_{3}-F(\bar{x}) \neq 0$. Consequently, from the final two equations we obtain $\bar{x}_{2}=\bar{x}_{3}=0$. Then, the substitution of this in $\beta_{1}=F(\bar{x})$ shows that \bar{x}_{1} necessarily equals β_{1} / α_{1} (and note that this does not contradict our assumption $\bar{x}_{1} \neq 0$). We have thus found the equilibrium point

$$
\bar{x}=\left[\begin{array}{c}
\frac{\beta_{1}}{\alpha_{1}} \tag{5}\\
0 \\
0
\end{array}\right] .
$$

Now, consider the alternative case $\bar{x}_{1}=0$. Then, we either have the trivial equilibrium point $\bar{x}=0$ or, alternatively, either $\bar{x}_{2} \neq 0$ or $\bar{x}_{3} \neq 0$ (or both). In the latter case, following the same reasoning as above, we observe that any equilibrium point is of the form $\bar{x}_{i}>0$ for some $i=1,2,3$ and \bar{x}_{j} for $j \neq i$ as desired.
(b) To find the linearized dynamics around the equilibrium (5), introduce the deviation from the equilibrium as

$$
\begin{equation*}
\tilde{x}=x-\bar{x} . \tag{6}
\end{equation*}
$$

Then, after introducing the notation

$$
f(x)=\left[\begin{array}{l}
\left(\beta_{1}-F(x)\right) x_{1} \tag{7}\\
\left(\beta_{2}-F(x)\right) x_{2} \\
\left(\beta_{3}-F(x)\right) x_{3}
\end{array}\right]=\left[\begin{array}{l}
\beta_{1} x_{1}-\alpha_{1} x_{1}^{2}-\alpha_{2} x_{1} x_{2}-\alpha_{3} x_{1} x_{3} \\
\beta_{2} x_{2}-\alpha_{1} x_{1} x_{2}-\alpha_{2} x_{2}^{2}-\alpha_{3} x_{2} x_{3} \\
\beta_{3} x_{3}-\alpha_{1} x_{1} x_{3}-\alpha_{2} x_{2} x_{3}-\alpha_{3} x_{3}^{3}
\end{array}\right],
$$

we have that

$$
\begin{equation*}
\dot{\tilde{x}}=\dot{x}=f(\bar{x}+\tilde{x}) \approx f(\bar{x})+\frac{\partial f}{\partial x}(\bar{x}) \tilde{x}=\frac{\partial f}{\partial x}(\bar{x}) \tilde{x} \tag{8}
\end{equation*}
$$

A direct computation leads to

$$
\frac{\partial f_{i}}{\partial x_{j}}= \begin{cases}\beta_{i}-F(x)-\alpha_{i} x_{i} & , i=j, \tag{9}\\ -\alpha_{j} x_{i} & , i \neq j .\end{cases}
$$

such that

$$
\frac{\partial f}{\partial x}(\bar{x})=\left[\begin{array}{ccc}
-\beta_{1} & -\frac{\alpha_{2}}{\alpha_{1}} \beta_{1} & -\frac{\alpha_{3}}{\alpha_{1}} \beta_{1} \tag{10}\\
0 & \beta_{2}-\beta_{1} & 0 \\
0 & 0 & \beta_{3}-\beta_{1}
\end{array}\right]
$$

Thus, the linearized dynamics is given as

$$
\dot{\tilde{x}}(t)=\left[\begin{array}{ccc}
-\beta_{1} & -\frac{\alpha_{2}}{\alpha_{1}} \beta_{1} & -\frac{\alpha_{3}}{\alpha_{1}} \beta_{1} \tag{11}\\
0 & \beta_{2}-\beta_{1} & 0 \\
0 & 0 & \beta_{3}-\beta_{1}
\end{array}\right] \tilde{x}(t)
$$

(c) Stability is determined by the eigenvalues of the matrix (10). Due to the upper blocktriangular structure, the eigenvalues are

$$
\begin{equation*}
-\beta_{1}, \quad \beta_{2}-\beta_{1}, \quad \beta_{3}-\beta_{1} \tag{12}
\end{equation*}
$$

Given the condition (3), these eigenvalues are all (real and) negative, such that the linearized system is (asymptotically) stable.

Problem 2

Consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B u(t), \tag{13}
\end{equation*}
$$

with state $x(t) \in \mathbb{R}^{3}$, input $u(t) \in \mathbb{R}$, and where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \tag{14}\\
0 & -1 & 1 \\
0 & -1 & -3
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(a) Controllability can be verified by evaluating the controllability matrix as

$$
\left[\begin{array}{lll}
B & A B & A^{2} B
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{15}\\
0 & 1 & -4 \\
1 & -3 & 8
\end{array}\right]
$$

whose rank can be seen to equal 3 (note the triangular structure). As this equals the dimension of the state space, the system (13)-(14) is controllable.
(b) As a first step, computation of the characteristic polynomial of A in (14) yields

$$
\begin{align*}
\Delta_{A}(\lambda)=\operatorname{det}(\lambda I-A) & =\left|\begin{array}{ccc}
\lambda-1 & -1 & 0 \\
0 & \lambda+1 & -1 \\
0 & 1 & \lambda+3
\end{array}\right|, \\
& =(\lambda-1)((\lambda+1)(\lambda+3)+1), \\
& =(\lambda-1)\left(\lambda^{2}+4 \lambda+4\right), \\
& =\lambda^{3}+3 \lambda^{2}-4 . \tag{16}
\end{align*}
$$

Hence, after defining

$$
\begin{equation*}
a_{1}=3, \quad a_{2}=0, \quad a_{3}=-4 \tag{17}
\end{equation*}
$$

we can write

$$
\begin{equation*}
\Delta_{A}(\lambda)=\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}, \tag{18}
\end{equation*}
$$

which is of the same form as in the lecture notes.
To find the transformation matrix T, consider

$$
\begin{align*}
& q_{3}=B=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \tag{19}\\
& q_{2}=A B+a_{1} B=\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]+3\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \tag{20}\\
& q_{1}=A^{2} B+a_{1} A B+a_{2} B=\left[\begin{array}{c}
1 \\
-4 \\
8
\end{array}\right]+3\left[\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right]+0=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right], \tag{21}
\end{align*}
$$

and note that the matrix-vector products $A B$ and $A^{2} B$ are already given in (15). Then, the matrix T defined as

$$
T=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{22}\\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

has the desired properties. Namely, using the property

$$
T^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \tag{23}\\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right],
$$

one can verify that

$$
T^{-1} A T=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{24}\\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right],
$$

and

$$
T^{-1} B=\left[\begin{array}{l}
0 \tag{25}\\
0 \\
1
\end{array}\right]
$$

as desired. Note that this gives

$$
\begin{equation*}
\alpha_{1}=-a_{3}=4, \quad \alpha_{2}=-a_{2}=0, \quad \alpha_{3}=-a_{1}=-3 \tag{26}
\end{equation*}
$$

which could have been concluded immediately from (17)-(18) as the standard controllable canonical form (24) is guaranteed by construction.
(c) The matrices $A+B F$ and

$$
\begin{equation*}
T^{-1}(A+B F) T=T^{-1} A T+T^{-1} B F T \tag{27}
\end{equation*}
$$

have the same eigenvalues by similarity transformation. Denote

$$
\bar{F}=\left[\begin{array}{ll}
\bar{f}_{3} & \bar{f}_{2} \tag{28}\\
\bar{f}_{1}
\end{array}\right]=F T
$$

and compute

$$
T^{-1} A T+T^{-1} B F T=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{29}\\
0 & 0 & 1 \\
\bar{f}_{3}-a_{3} & \bar{f}_{2}-a_{2} & \bar{f}_{1}-a_{1}
\end{array}\right]
$$

Due to its companion form, the characteristic equation of this matrix is easily given as

$$
\begin{equation*}
\Delta_{T^{-1}(A+B F) T}(\lambda)=\lambda^{3}+\left(a_{1}-\bar{f}_{1}\right) \lambda^{2}+\left(a_{2}-\bar{f}_{2}\right) \lambda+\left(a_{3}-\bar{f}_{3}\right) . \tag{30}
\end{equation*}
$$

We would like this closed-loop system matrix to have eigenvalues at $-2,-2$, and -3 , such that its desired characteristic polynomial $p(\lambda)$ is given as

$$
\begin{equation*}
p(\lambda)=(\lambda+2)^{2}(\lambda+3)=\left(\lambda^{2}+4 \lambda+4\right)(\lambda+3)=\lambda^{3}+7 \lambda^{2}+16 \lambda+12 . \tag{31}
\end{equation*}
$$

Equating (30) and (31), hereby using the values of $a_{i}, i \in\{1,2,3\}$ in (17), gives

$$
\begin{align*}
& \bar{f}_{1}=a_{1}-7=3-7=-4, \\
& \bar{f}_{2}=a_{2}-16=0-16=-16, \tag{32}\\
& \bar{f}_{3}=a_{3}-12=-4-12=-16,
\end{align*}
$$

such that

$$
\begin{equation*}
\bar{F}=[-16-16-4] . \tag{33}
\end{equation*}
$$

To find the feedback matrix F (in the original coordinates), solve the linear system $F T=\bar{F}$ as

$$
F\left[\begin{array}{ccc}
1 & 0 & 0 \tag{34}\\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
-16 & -16 & -4
\end{array}\right]
$$

which yields

$$
\begin{equation*}
F=[-36-16-4] . \tag{35}
\end{equation*}
$$

Note that the triangular structure of T allows for conveniently solving (34). Alternatively, one could directly compute $F=\bar{F} T^{-1}$ with T^{-1} as in (23).

Consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{36}\\
0 & 0 & 1 \\
-2 b & -b & -a
\end{array}\right] x(t)
$$

where $a, b \in \mathbb{R}$.
After denoting

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{37}\\
0 & 0 & 1 \\
-2 b & -b & -a
\end{array}\right]
$$

and observing that this matrix is in so-called companion form, it follows that its characteristic polynomial reads

$$
\begin{equation*}
\Delta_{A}(s)=s^{3}+a s^{2}+b s+2 b \tag{38}
\end{equation*}
$$

We will use the Routh-Hurwitz criterion to assess stability of the polynomial and, hence, of the linear system (36). To this end, consider the following table:

$$
\begin{aligned}
& \begin{array}{cccc}
s^{3} & s^{2} & s^{1} & s^{0} \\
\hline 1 & a & b & 2 b
\end{array} \text { (step 0) }
\end{aligned}
$$

$$
\begin{aligned}
& a^{2} \times \quad(a-2) b
\end{aligned}
$$

The polynomial indicated in step 0 above is the characteristic polynomial Δ_{A}. By the RouthHurwitz criterion, a necessary condition for stability is that the coefficients corresponding to the two highest powers have the same sign, which means that necessarily $a>0$. Moreover, a necessary condition for a polynomial to be stable is that all its coefficients have the same sign, which also leads to $b>0$. Thus, we have

$$
\begin{equation*}
a>0, \quad b>0 . \tag{39}
\end{equation*}
$$

After the first application of the recursive Routh-Hurwitz theorem, we obtain the polynomial of step 1. Similar to before, a necessary condition for stability is that all coefficients are positive. This strengthens the conditions (39) to

$$
\begin{equation*}
a>2, \quad b>0 \tag{40}
\end{equation*}
$$

Then, after the second application of the Routh-Hurwitz theorem, the linear polynomial

$$
\begin{equation*}
(a-2) b s+2 a b \tag{41}
\end{equation*}
$$

is obtained. Given the conditions (40), it is readily checked that this polynomial is stable. Hence, the linear system (36) is stable if and only if (40) holds.

Consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{ccc}
1 & 2 & 0 \tag{42}\\
2 & -4 & 7 \\
1 & -4 & 6
\end{array}\right] x(t), \quad y(t)=\left[\begin{array}{lll}
1 & -2 & 2
\end{array}\right] x(t) .
$$

(a) To verify whether the system is observable, compute

$$
\left[\begin{array}{c}
C \tag{43}\\
C A \\
C A^{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-1 & 2 & -2 \\
1 & -2 & 2
\end{array}\right] .
$$

As this matrix has rank 1 (note that all rows are linearly dependent), the system is not observable.
(b) The unobservable subspace \mathcal{N} reads

$$
\mathcal{N}=\operatorname{ker}\left[\begin{array}{c}
C \tag{44}\\
C A \\
C A^{2}
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ccc}
1 & -2 & 2 \\
-1 & 2 & -2 \\
1 & -2 & 2
\end{array}\right]
$$

for which a basis is given as

$$
\mathcal{N}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \tag{45}\\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

In the remainder of this problem, consider the linear system

$$
\dot{x}(t)=\left[\begin{array}{cc}
a-3 & 8-2 a \tag{46}\\
0 & 1
\end{array}\right] x(t)+\left[\begin{array}{c}
2 a \\
a
\end{array}\right] u(t),
$$

with a a real parameter.
(c) To determine whether (46) is controllable, denote

$$
A=\left[\begin{array}{cc}
a-3 & 8-2 a \tag{47}\\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{c}
2 a \\
a
\end{array}\right]
$$

and compute

$$
\left[\begin{array}{cc}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
2 a & 2 a \tag{48}\\
a & a
\end{array}\right]
$$

which has rank 1 for $a \neq 0$ and is the zero matrix otherwise. Hence, the system (46) is never controllable.
(d) Recall that the pair (A, B) is stabilizable if and only if

$$
\begin{equation*}
\operatorname{rank}[\lambda I-A B]=n \quad \text { for all } \quad \lambda \in \sigma(A) \text { s.t. } \Re(\lambda) \geq 0 . \tag{49}
\end{equation*}
$$

Note that the eigenvalues of A in (47) are given by

$$
\begin{equation*}
\lambda_{1}=a-3, \quad \lambda_{2}=1 \tag{50}
\end{equation*}
$$

First, starting with $\lambda_{2}=1$, we have

$$
\left[\lambda_{2} I-A B\right]=\left[\begin{array}{ccc}
4-a & 2 a-8 & 2 a \tag{51}\\
0 & 0 & a
\end{array}\right]
$$

which has rank 2 for all a such that $a \neq 0$ and $a \neq 4$ (then, λ_{2} is a controllable eigenvalue). Next, considering $\lambda_{1}=a-3$, it is clear that $a<3$ implies that $\Re\left(\lambda_{1}\right)<0$ and there is no need to verify controllability of the eigenvalue. Thus, combining this with the earlier observation on λ_{2}, we have that (A, B) is stabilizable if

$$
\begin{equation*}
a<3, \quad a \neq 0 \tag{52}
\end{equation*}
$$

Now, take $a \geq 3$. Then,

$$
\left[\lambda_{1} I-A B\right]=\left[\begin{array}{ccc}
0 & 2 a-8 & 2 a \tag{53}\\
0 & a-4 & a
\end{array}\right]=\left[\begin{array}{ccc}
0 & 2(a-4) & 2 a \\
0 & a-4 & a
\end{array}\right]
$$

which has rank 1 . Thus, the eigenvalue λ_{1} is never controllable.
Combining these results, we have that (46) is stabilizable if and only if (52) holds.

Consider the linear system

$$
\begin{equation*}
\dot{x}(t)=A x(t), \quad y(t)=C x(t) \tag{54}
\end{equation*}
$$

with $x(t) \in \mathbb{R}^{n}, y(t) \in \mathbb{R}^{p}$, and A and C real matrices. Recall that a matrix $X \in \mathbb{R}^{n \times n}$ is called positive definite if $v^{*} X v>0$ for all $v \neq 0$ and with v^{*} the Hermitian transpose of v.

Assume that the matrix pair (A, C) is observable and that there exists a positive definite symmetric matrix X that solves the matrix equation

$$
\begin{equation*}
A^{\mathrm{T}} X+X A+C^{\mathrm{T}} C=0 \tag{55}
\end{equation*}
$$

To show that this implies asymptotic stability, let λ be an eigenvalue of A, i.e., $A v=\lambda v$ for some $v \neq 0$. Then, pre- and post-multiplication of (55) by v^{*} and v, respectively, leads to

$$
\begin{align*}
0 & =v^{*} A^{\mathrm{T}} X v+v^{*} X A v+v^{*} C^{\mathrm{T}} C v, \\
& =\bar{\lambda} v^{*} X v+\lambda v^{*} X v+v^{*} C^{\mathrm{T}} C v, \\
& =2 \Re(\lambda) v^{*} X v+v^{*} C^{\mathrm{T}} C v . \tag{56}
\end{align*}
$$

Here, $\bar{\lambda}$ denotes the complex conjugate of λ and we have used that $\lambda+\bar{\lambda}=2 \Re(\lambda)$. Then, we obtain

$$
\begin{equation*}
\Re(\lambda)=-\frac{v^{*} C^{\mathrm{T}} C v}{2 v^{*} X v} \leq 0 \tag{57}
\end{equation*}
$$

where we have used that X is positive definite and that $v^{*} C^{\mathrm{T}} C v \geq 0$.
This result can be strengthened by noting that $\Re(\lambda)=0$ if and only if $C v=0$. In this case, note that

$$
\left[\begin{array}{c}
\lambda I-A \tag{58}\\
C
\end{array}\right] v=0
$$

which implies

$$
\operatorname{rank}\left[\begin{array}{c}
\lambda I-A \tag{59}\\
C
\end{array}\right]<n
$$

However, this contradicts (by the Hautus test) the assumption that the matrix pair (A, C) is observable. Thus, we have that $C v \neq 0$ and, moreover,

$$
\begin{equation*}
\Re(\lambda)=-\frac{v^{*} C^{\mathrm{T}} C v}{2 v^{*} X v}<0 . \tag{60}
\end{equation*}
$$

This proves the desired result.

