Project systems theory — Solutions
Resit exam 20182019, Friday 12 April 2019, 14:00 — 17:00

Problem 1 (6 + 8 + 4 = 18 points)

Consider the model of population dynamics given by

i1 (t) = (B1 — F(x(t)))xi(t),
io(t) = (B2 — F(x(t)))w2(t), (1)
is(t) = (B3 — F(x(t)))zs(t),

where z;(t) € R, i = 1,2,3 denote the populations of three species and z = [z; z2 z3]T. Here,
F(z) = a1ry + aozs + azaxs, (2)

for real parameters «; > 0, i = 1,2, 3, denotes the total burden on the environment and 5; > 0,
i =1,2,3, denote the natural growth rates for each species. They are assumed to satisfy

B> B2 > B3> 0. (3)

T

(a) Equilibrium points & = [Z1 T2 T3]" are defined as solutions of

Starting with the first equation, we consider the cases ; # 0 and z; = 0.

Assume that Z; # 0, then we necessarily have 81 = F(Z). However, as the values of §;
are distinct (see (3)), this means that S — F(Z) # 0 and 85 — F(Z) # 0. Consequently,
from the final two equations we obtain Zo = Tz = 0. Then, the substitution of this in
B1 = F(Z) shows that Z; necessarily equals 31/a; (and note that this does not contradict
our assumption Z; # 0). We have thus found the equilibrium point

(5)
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Now, consider the alternative case 1 = 0. Then, we either have the trivial equilibrium point
Z = 0 or, alternatively, either Zo # 0 or Z3 # 0 (or both). In the latter case, following the
same reasoning as above, we observe that any equilibrium point is of the form z; > 0 for
some ¢ = 1,2,3 and z; for j # 4 as desired.

(b) To find the linearized dynamics around the equilibrium (5), introduce the deviation from
the equilibrium as
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Then, after introducing the notation

(B1 — F(x))r Bix1 — alx% — (px1T2 — O3T1T3
f(@)= | (B2 — F(x)ag | = | faza — 12122 — a2a3 — agats | , (7)
(B3 — F(z))r3 B3T3 — 1 1T3 — QaTals — A3TH



we have that

Foi= f(747) ~ @) + 2 (@)F = (D)7

A direct computation leads to

0fi :{ﬁi—F(m‘)—aiwi ;i =17,

Ox; —0y; s IFE ]
such that
-0 -2 -5
8 _ aq [e5]
Tw={ 0 p-p
0 0 B3—p

Thus, the linearized dynamics is given as

) B =B —32h
Tt)=| 0 Bo—p1 O z(t).
0 0 B3—p

(11)

Stability is determined by the eigenvalues of the matrix (10). Due to the upper block-

triangular structure, the eigenvalues are

—fr, P2—P1, B3P

(12)

Given the condition (3), these eigenvalues are all (real and) negative, such that the linearized

system is (asymptotically) stable.



Problem 2 (4 + 12 + 6 = 22 points)

Consider the linear system
x(t) = Ax(t) + Bu(t), (13)

with state z(t) € R?, input u(t) € R, and where

00 1
[BAB A°B]= |01 —4|, (15)
1-3 8

whose rank can be seen to equal 3 (note the triangular structure). As this equals the
dimension of the state space, the system (13)—(14) is controllable.

(b) As a first step, computation of the characteristic polynomial of A in (14) yields

A—1 -1 0
AgN) =detO —A)=| 0 A+1 —1 |,
0 1 A+3

=A-1((A+DA+3)+1),
= (A =1) (A2 +4)\+4),

=X\ +3\ 4. (16)
Hence, after defining
a1 =3, ay=0, az3=—4, (17)
we can write
As(N) = X+ ar M\ + ag) + as, (18)

which is of the same form as in the lecture notes.

To find the transformation matrix 7', consider

0
¢s=B=10], (19)
1
0 0] 0
¢2=AB4+aB=|1 | +3|0|=|1], (20)
-3 1] 0
1] 0 1
G =A’B+aAB+aB=|—-4|+3| 1 |+0=|-1], (21)
8 -3 -1

and note that the matrix-vector products AB and A?B are already given in (15). Then, the
matrix T" defined as

1 00

T=[qqq]=|-110 (22)
—-101



has the desired properties. Namely, using the property

100
T-'=1110], (23)
101
one can verify that
01 0 0 1 0
T'AT=1]001|=|0 0 1 [, (24)
40 -3 —a3 —a —aq
and
0
T'B=|0]|, (25)
1
as desired. Note that this gives
Q1] = —agz = 4, Qo = —Ay = 0, Q3 = —a1 = —3, (26)

which could have been concluded immediately from (17)—(18) as the standard controllable
canonical form (24) is guaranteed by construction.

The matrices A + BF' and
T Y (A+ BF)YT =T 'AT + T7'BFT (27)

have the same eigenvalues by similarity transformation. Denote

F=1[fs fo fi] =FT (28)
and compute
0 1 0
T 'AT + T 'BFT = 0 0 1 : (29)

f3—a3 fz—az f1 —ax
Due to its companion form, the characteristic equation of this matrix is easily given as

Ar—iarprr(A) = X+ (a1 — f1)N* + (a2 — f2)A + (as — f3). (30)

We would like this closed-loop system matrix to have eigenvalues at —2, —2, and —3, such
that its desired characteristic polynomial p(}) is given as

pPA) = (A +2)2(A+3) = (A2 +4A +4) (A +3) = A + 72 + 16X + 12. (31)
Equating (30) and (31), hereby using the values of a;, ¢ € {1,2,3} in (17), gives

fi=a1—7T=3-T=—4,
fo=ay—16=0-16 = —16, (32)
fs=a3—12=—-4-12 = —16,

such that

F=[-16 —16 —4]. (33)



To find the feedback matrix F (in the original coordinates), solve the linear system FT = F
as

100
F|-110|=[-16-16 —4], (34)
-101
which yields
F=1[-36-16 —4]. (35)

Note that the triangular structure of 7" allows for conveniently solving (34). Alternatively,
one could directly compute F' = FT~! with 71 as in (23).



Problem 3 (15 points)

Consider the linear system

0 1 0
zty=1 0 0 1 |z(t), (36)
—2b —b —a
where a,b € R.
After denoting
0 1 0
A= 0 0 1 |, (37)
—2b —b —a

and observing that this matrix is in so-called companion form, it follows that its characteristic
polynomial reads

Aa(s) = s + as® +bs + 2b. (38)

We will use the Routh-Hurwitz criterion to assess stability of the polynomial and, hence, of the
linear system (36). To this end, consider the following table:

83 52 st 59
ax 1 a b 2b (step 0)
1x a 2b
(@ —2)bx a? (a—2)b 2ab (step 1)
a®x (a—2)b

(a—2)%0* 2ab*(a —2)
(a—2)b 2ab (step 2, after division by (a — 2)b)

The polynomial indicated in step 0 above is the characteristic polynomial A4. By the Routh-
Hurwitz criterion, a necessary condition for stability is that the coefficients corresponding to the
two highest powers have the same sign, which means that necessarily a > 0. Moreover, a necessary
condition for a polynomial to be stable is that all its coefficients have the same sign, which also
leads to b > 0. Thus, we have

a>0, b>0. (39)

After the first application of the recursive Routh-Hurwitz theorem, we obtain the polynomial
of step 1. Similar to before, a necessary condition for stability is that all coefficients are positive.
This strengthens the conditions (39) to

a>2, b>0. (40)
Then, after the second application of the Routh-Hurwitz theorem, the linear polynomial
(a —2)bs + 2ab (41)

is obtained. Given the conditions (40), it is readily checked that this polynomial is stable. Hence,
the linear system (36) is stable if and only if (40) holds.



Problem 4 (4 + 4+ 4+ 8 = 20 points)

Consider the linear system

1 20
z(t)= 12 -4 7| x(), y(t)=[1 -2 2] (). (42)
1-46

(a) To verify whether the system is observable, compute

c 1 -2 2
CA|=]-12 —2]. (43)
C A2 1 -2 2

As this matrix has rank 1 (note that all rows are linearly dependent), the system is not
observable.

(b) The unobservable subspace N reads

C 1 -2 2
N=ker| CA| =ker | -1 2 -2, (44)
CA? 1 -2 2
for which a basis is given as
2 0
N=span{ [1], |1 . (45)
0 1

In the remainder of this problem, consider the linear system

. a—38—2a 2a

z(t) = { 0 1 ] x(t) + [ a ] u(t), (46)
with a a real parameter.
(c¢) To determine whether (46) is controllable, denote
a—38—2a 2a
e[ ] oe[2]
and compute
(B AB]:{QG 2“}, (48)
a a

which has rank 1 for a # 0 and is the zero matrix otherwise. Hence, the system (46) is never
controllable.

(d) Recall that the pair (A, B) is stabilizable if and only if
rank [\ — A B] =n forall \eog(4)st. R(\) >0. (49)
Note that the eigenvalues of A in (47) are given by
A1 =a—3, Ao = 1. (50)
First, starting with Ao = 1, we have

4—a 2a—8 2a

[MI—=AB]=|", 0 al

BN



which has rank 2 for all a such that a # 0 and a # 4 (then, s is a controllable eigenvalue).

Next, considering Ay = a — 3, it is clear that a < 3 implies that (A1) < 0 and there is
no need to verify controllability of the eigenvalue. Thus, combining this with the earlier

observation on Ay, we have that (A, B) is stabilizable if
a < 3, a # 0.

Now, take a > 3. Then,

~102a—82a| [02(a—4) 2a
[All_AB]_{O a—4 a}_[o a—4 a}’

which has rank 1. Thus, the eigenvalue \; is never controllable.

Combining these results, we have that (46) is stabilizable if and only if (52) holds.

(52)

(53)



Problem 5 (15 points)

Consider the linear system
i(t) = Az(t),  y(t) = Cz(?), (54)
with z(t) € R™, y(t) € R?, and A and C real matrices. Recall that a matrix X € R"*" is called
positive definite if v*Xv > 0 for all v # 0 and with v* the Hermitian transpose of v.
Assume that the matrix pair (A, C) is observable and that there exists a positive definite
symmetric matrix X that solves the matrix equation

ATX + XA+ CTC =o0. (55)

To show that this implies asymptotic stability, let A be an eigenvalue of A, i.e., Av = v for
some v # 0. Then, pre- and post-multiplication of (55) by v* and v, respectively, leads to

0=v"ATXv+ v* X Av +v*CTCv,
= M Xv+ MW Xv+0v*CTCOv,
= 2R(\)v* Xv +v*CTCOw. (56)

Here, A denotes the complex conjugate of A and we have used that A + A = 2R()\). Then, we
obtain

v*CTCo

ROV = - 20 Xv

<0, (57)
where we have used that X is positive definite and that v*CTCwv > 0.

This result can be strengthened by noting that (\) = 0 if and only if Cv = 0. In this case,
note that

[MCTA]U_O, (58)

which implies

(59)

rank [)\I_A} <n

C

However, this contradicts (by the Hautus test) the assumption that the matrix pair (4, C) is
observable. Thus, we have that Cv # 0 and, moreover,

v*CTCo

RO = - 2v* Xv

<0. (60)

This proves the desired result.



