
Project systems theory – Solutions
Resit exam 2018–2019, Friday 12 April 2019, 14:00 – 17:00

Problem 1 (6 + 8 + 4 = 18 points)

Consider the model of population dynamics given by

ẋ1(t) =
(
β1 − F (x(t))

)
x1(t),

ẋ2(t) =
(
β2 − F (x(t))

)
x2(t), (1)

ẋ3(t) =
(
β3 − F (x(t))

)
x3(t),

where xi(t) ∈ R, i = 1, 2, 3 denote the populations of three species and x = [ x1 x2 x3 ]T. Here,

F (x) = α1x1 + α2x2 + α3x3, (2)

for real parameters αi > 0, i = 1, 2, 3, denotes the total burden on the environment and βi > 0,
i = 1, 2, 3, denote the natural growth rates for each species. They are assumed to satisfy

β1 > β2 > β3 > 0. (3)

(a) Equilibrium points x̄ = [ x̄1 x̄2 x̄3 ]T are defined as solutions of

0 =
(
β1 − F (x̄)

)
x̄1,

0 =
(
β2 − F (x̄)

)
x̄2, (4)

0 =
(
β3 − F (x̄)

)
x̄3.

Starting with the first equation, we consider the cases x̄1 6= 0 and x̄1 = 0.

Assume that x̄1 6= 0, then we necessarily have β1 = F (x̄). However, as the values of βi
are distinct (see (3)), this means that β2 − F (x̄) 6= 0 and β3 − F (x̄) 6= 0. Consequently,
from the final two equations we obtain x̄2 = x̄3 = 0. Then, the substitution of this in
β1 = F (x̄) shows that x̄1 necessarily equals β1/α1 (and note that this does not contradict
our assumption x̄1 6= 0). We have thus found the equilibrium point

x̄ =

 β1

α1

0
0

 . (5)

Now, consider the alternative case x̄1 = 0. Then, we either have the trivial equilibrium point
x̄ = 0 or, alternatively, either x̄2 6= 0 or x̄3 6= 0 (or both). In the latter case, following the
same reasoning as above, we observe that any equilibrium point is of the form x̄i > 0 for
some i = 1, 2, 3 and x̄j for j 6= i as desired.

(b) To find the linearized dynamics around the equilibrium (5), introduce the deviation from
the equilibrium as

x̃ = x− x̄. (6)

Then, after introducing the notation

f(x) =

 (β1 − F (x))x1
(β2 − F (x))x2
(β3 − F (x))x3

 =

 β1x1 − α1x
2
1 − α2x1x2 − α3x1x3

β2x2 − α1x1x2 − α2x
2
2 − α3x2x3

β3x3 − α1x1x3 − α2x2x3 − α3x
3
3

 , (7)

1



we have that

˙̃x = ẋ = f
(
x̄+ x̃

)
≈ f(x̄) +

∂f

∂x
(x̄)x̃ =

∂f

∂x
(x̄)x̃. (8)

A direct computation leads to

∂fi
∂xj

=

{
βi − F (x)− αixi , i = j,
−αjxi , i 6= j.

(9)

such that

∂f

∂x
(x̄) =

−β1 −α2

α1
β1 −α3

α1
β1

0 β2 − β1 0
0 0 β3 − β1

 . (10)

Thus, the linearized dynamics is given as

˙̃x(t) =

−β1 −α2

α1
β1 −α3

α1
β1

0 β2 − β1 0
0 0 β3 − β1

 x̃(t). (11)

(c) Stability is determined by the eigenvalues of the matrix (10). Due to the upper block-
triangular structure, the eigenvalues are

−β1, β2 − β1, β3 − β1. (12)

Given the condition (3), these eigenvalues are all (real and) negative, such that the linearized
system is (asymptotically) stable.
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Problem 2 (4 + 12 + 6 = 22 points)

Consider the linear system

ẋ(t) = Ax(t) +Bu(t), (13)

with state x(t) ∈ R3, input u(t) ∈ R, and where

A =

 1 1 0
0 −1 1
0 −1 −3

 , B =

 0
0
1

 . (14)

(a) Controllability can be verified by evaluating the controllability matrix as

[
B AB A2B

]
=

 0 0 1
0 1 −4
1 −3 8

 , (15)

whose rank can be seen to equal 3 (note the triangular structure). As this equals the
dimension of the state space, the system (13)–(14) is controllable.

(b) As a first step, computation of the characteristic polynomial of A in (14) yields

∆A(λ) = det(λI −A) =

∣∣∣∣∣∣
λ− 1 −1 0

0 λ+ 1 −1
0 1 λ+ 3

∣∣∣∣∣∣ ,
= (λ− 1)

(
(λ+ 1)(λ+ 3) + 1

)
,

= (λ− 1)(λ2 + 4λ+ 4),

= λ3 + 3λ2 − 4. (16)

Hence, after defining

a1 = 3, a2 = 0, a3 = −4, (17)

we can write

∆A(λ) = λ3 + a1λ
2 + a2λ+ a3, (18)

which is of the same form as in the lecture notes.

To find the transformation matrix T , consider

q3 = B =

 0
0
1

 , (19)

q2 = AB + a1B =

 0
1
−3

+ 3

 0
0
1

 =

 0
1
0

 , (20)

q1 = A2B + a1AB + a2B =

 1
−4
8

+ 3

 0
1
−3

+ 0 =

 1
−1
−1

 , (21)

and note that the matrix-vector products AB and A2B are already given in (15). Then, the
matrix T defined as

T =
[
q1 q2 q3

]
=

 1 0 0
−1 1 0
−1 0 1

 (22)
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has the desired properties. Namely, using the property

T−1 =

 1 0 0
1 1 0
1 0 1

 , (23)

one can verify that

T−1AT =

 0 1 0
0 0 1
4 0 −3

 =

 0 1 0
0 0 1
−a3 −a2 −a1

 , (24)

and

T−1B =

 0
0
1

 , (25)

as desired. Note that this gives

α1 = −a3 = 4, α2 = −a2 = 0, α3 = −a1 = −3, (26)

which could have been concluded immediately from (17)–(18) as the standard controllable
canonical form (24) is guaranteed by construction.

(c) The matrices A+BF and

T−1(A+BF )T = T−1AT + T−1BFT (27)

have the same eigenvalues by similarity transformation. Denote

F̄ =
[
f̄3 f̄2 f̄1

]
= FT (28)

and compute

T−1AT + T−1BFT =

 0 1 0
0 0 1

f̄3 − a3 f̄2 − a2 f̄1 − a1

 . (29)

Due to its companion form, the characteristic equation of this matrix is easily given as

∆T−1(A+BF )T (λ) = λ3 + (a1 − f̄1)λ2 + (a2 − f̄2)λ+ (a3 − f̄3). (30)

We would like this closed-loop system matrix to have eigenvalues at −2, −2, and −3, such
that its desired characteristic polynomial p(λ) is given as

p(λ) = (λ+ 2)2(λ+ 3) = (λ2 + 4λ+ 4)(λ+ 3) = λ3 + 7λ2 + 16λ+ 12. (31)

Equating (30) and (31), hereby using the values of ai, i ∈ {1, 2, 3} in (17), gives

f̄1 = a1 − 7 = 3− 7 = −4,

f̄2 = a2 − 16 = 0− 16 = −16, (32)

f̄3 = a3 − 12 = −4− 12 = −16,

such that

F̄ =
[
−16 −16 −4

]
. (33)
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To find the feedback matrix F (in the original coordinates), solve the linear system FT = F̄
as

F

 1 0 0
−1 1 0
−1 0 1

 =
[
−16 −16 −4

]
, (34)

which yields

F =
[
−36 −16 −4

]
. (35)

Note that the triangular structure of T allows for conveniently solving (34). Alternatively,
one could directly compute F = F̄ T−1 with T−1 as in (23).
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Problem 3 (15 points)

Consider the linear system

ẋ(t) =

 0 1 0
0 0 1
−2b −b −a

x(t), (36)

where a, b ∈ R.
After denoting

A =

 0 1 0
0 0 1
−2b −b −a

 , (37)

and observing that this matrix is in so-called companion form, it follows that its characteristic
polynomial reads

∆A(s) = s3 + as2 + bs+ 2b. (38)

We will use the Routh-Hurwitz criterion to assess stability of the polynomial and, hence, of the
linear system (36). To this end, consider the following table:

s3 s2 s1 s0

a× 1 a b 2b (step 0)
1× a 2b

(a− 2)b× a2 (a− 2)b 2ab (step 1)
a2× (a− 2)b

(a− 2)2b2 2ab2(a− 2)
(a− 2)b 2ab (step 2, after division by (a− 2)b)

The polynomial indicated in step 0 above is the characteristic polynomial ∆A. By the Routh-
Hurwitz criterion, a necessary condition for stability is that the coefficients corresponding to the
two highest powers have the same sign, which means that necessarily a > 0. Moreover, a necessary
condition for a polynomial to be stable is that all its coefficients have the same sign, which also
leads to b > 0. Thus, we have

a > 0, b > 0. (39)

After the first application of the recursive Routh-Hurwitz theorem, we obtain the polynomial
of step 1. Similar to before, a necessary condition for stability is that all coefficients are positive.
This strengthens the conditions (39) to

a > 2, b > 0. (40)

Then, after the second application of the Routh-Hurwitz theorem, the linear polynomial

(a− 2)bs+ 2ab (41)

is obtained. Given the conditions (40), it is readily checked that this polynomial is stable. Hence,
the linear system (36) is stable if and only if (40) holds.
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Problem 4 (4 + 4 + 4 + 8 = 20 points)

Consider the linear system

ẋ(t) =

 1 2 0
2 −4 7
1 −4 6

x(t), y(t) =
[

1 −2 2
]
x(t). (42)

(a) To verify whether the system is observable, compute C
CA
CA2

 =

 1 −2 2
−1 2 −2
1 −2 2

 . (43)

As this matrix has rank 1 (note that all rows are linearly dependent), the system is not
observable.

(b) The unobservable subspace N reads

N = ker

 C
CA
CA2

 = ker

 1 −2 2
−1 2 −2
1 −2 2

 , (44)

for which a basis is given as

N = span


 2

1
0

 ,
 0

1
1

 . (45)

In the remainder of this problem, consider the linear system

ẋ(t) =

[
a− 3 8− 2a

0 1

]
x(t) +

[
2a
a

]
u(t), (46)

with a a real parameter.

(c) To determine whether (46) is controllable, denote

A =

[
a− 3 8− 2a

0 1

]
, B =

[
2a
a

]
(47)

and compute [
B AB

]
=

[
2a 2a
a a

]
, (48)

which has rank 1 for a 6= 0 and is the zero matrix otherwise. Hence, the system (46) is never
controllable.

(d) Recall that the pair (A,B) is stabilizable if and only if

rank
[
λI −A B

]
= n for all λ ∈ σ(A) s.t. <(λ) ≥ 0. (49)

Note that the eigenvalues of A in (47) are given by

λ1 = a− 3, λ2 = 1. (50)

First, starting with λ2 = 1, we have[
λ2I −A B

]
=

[
4− a 2a− 8 2a

0 0 a

]
, (51)
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which has rank 2 for all a such that a 6= 0 and a 6= 4 (then, λ2 is a controllable eigenvalue).

Next, considering λ1 = a − 3, it is clear that a < 3 implies that <(λ1) < 0 and there is
no need to verify controllability of the eigenvalue. Thus, combining this with the earlier
observation on λ2, we have that (A,B) is stabilizable if

a < 3, a 6= 0. (52)

Now, take a ≥ 3. Then,

[
λ1I −A B

]
=

[
0 2a− 8 2a
0 a− 4 a

]
=

[
0 2(a− 4) 2a
0 a− 4 a

]
, (53)

which has rank 1. Thus, the eigenvalue λ1 is never controllable.

Combining these results, we have that (46) is stabilizable if and only if (52) holds.

8



Problem 5 (15 points)

Consider the linear system

ẋ(t) = Ax(t), y(t) = Cx(t), (54)

with x(t) ∈ Rn, y(t) ∈ Rp, and A and C real matrices. Recall that a matrix X ∈ Rn×n is called
positive definite if v∗Xv > 0 for all v 6= 0 and with v∗ the Hermitian transpose of v.

Assume that the matrix pair (A,C) is observable and that there exists a positive definite
symmetric matrix X that solves the matrix equation

ATX +XA+ CTC = 0. (55)

To show that this implies asymptotic stability, let λ be an eigenvalue of A, i.e., Av = λv for
some v 6= 0. Then, pre- and post-multiplication of (55) by v∗ and v, respectively, leads to

0 = v∗ATXv + v∗XAv + v∗CTCv,

= λ̄v∗Xv + λv∗Xv + v∗CTCv,

= 2<(λ)v∗Xv + v∗CTCv. (56)

Here, λ̄ denotes the complex conjugate of λ and we have used that λ + λ̄ = 2<(λ). Then, we
obtain

<(λ) = −v
∗CTCv

2v∗Xv
≤ 0, (57)

where we have used that X is positive definite and that v∗CTCv ≥ 0.
This result can be strengthened by noting that <(λ) = 0 if and only if Cv = 0. In this case,

note that [
λI −A
C

]
v = 0, (58)

which implies

rank

[
λI −A
C

]
< n. (59)

However, this contradicts (by the Hautus test) the assumption that the matrix pair (A,C) is
observable. Thus, we have that Cv 6= 0 and, moreover,

<(λ) = −v
∗CTCv

2v∗Xv
< 0. (60)

This proves the desired result.
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